DCI®
DCI dosage rates and ACI guidelines

Corrosion is an electrochemical reaction similar to the process that takes place inside a battery. In reinforced concrete, the rebar acts as electrodes and the salt laden water as the electrolyte.

Many factors affect how quickly corrosion in concrete may begin. In unprotected concrete the most important factors are the chloride loading rate (from deicing salts or a marine environment) and the concrete quality.

Concrete quality is extremely important. So much so, that the American Concrete Institute (ACI) has set guidelines to help designers and contractors combat this problem. The better the quality of the concrete, the longer it will take before the chlorides reach the rebar and thus, before corrosion begins. Some of the parameters which effect concrete quality are cement factor, type of cement, water-cement ratio, concrete cover over the reinforcing steel, local materials used, placement of the concrete, finishing and curing techniques and even the structural design.

Since the chloride loading rate and final concrete quality are unknown factors, we cannot guarantee the longevity of the protection offered by DCI. Quality concrete as recommended by ACI will slow the ingress of chlorides into the concrete while DCI will significantly reduce the corrosion rate once the chlorides reach the rebar. Neither quality concrete nor DCI will stop corrosion forever but both will retard the onset of corrosion.

DCI corrosion inhibitor is a calcium nitrite based liquid which chemically controls the corrosive action of chloride salts. It is added to a concrete mix during the batching process or at the job site and disperses uniformly through the concrete. Once the concrete is placed, DCI stabilises the passivating layer of oxide normally found on the reinforcing steel in concrete. This significantly reduces the corrosion rate by making it more difficult for chlorides to penetrate the passivating layer.

DCI may be added at various dosage rates to protect against different levels of chlorides. A determination of the amount of chloride protection required for the project should first be made and then a DCI dosage rate chosen from Table I to protect against this amount. The degree of corrosion protection provided depends not only on the amount of DCI used but also upon the basic concrete quality. For this reason GCP recommends a systems approach to corrosion protection of quality concrete and DCI corrosion inhibitor. It is suggested that at least the minimum requirements for quality concrete based on ACI guidelines be followed. Some of these requirements are listed here, although ACI should be consulted for more details.

Table 1

<table>
<thead>
<tr>
<th>DCI (L / m³)</th>
<th>Chloride (kg / m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>3.6</td>
</tr>
<tr>
<td>12.5</td>
<td>4.8</td>
</tr>
<tr>
<td>15.0</td>
<td>5.9</td>
</tr>
<tr>
<td>17.5</td>
<td>6.8</td>
</tr>
<tr>
<td>20.0</td>
<td>7.7</td>
</tr>
<tr>
<td>22.5</td>
<td>8.4</td>
</tr>
<tr>
<td>25.0</td>
<td>8.9</td>
</tr>
<tr>
<td>27.5</td>
<td>9.3</td>
</tr>
<tr>
<td>30.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>
ACI 318 “Building Code Requirements for Reinforced Concrete”

Maximum water-cement ratio – Table 4.2.2
- for corrosion protection for exposure to deicing salts, brackish water, seawater 0.40
Minimum concrete protection (cover) for reinforcement – Section 7.7
- concrete exposed to weather 38mm to 50mm
Commentary Section 7.7.5 – corrosive environments cast-in-place:
 - 50mm walls and slabs
 - 65mm other members
 - Prestressed:
 - 38mm walls and slabs
 - 50mm other members
 - Note: DCI concrete requires a minimum cover of 19mm greater than the maximum aggregate size.

Total air content for frost-resistant concrete – Table 4.2.1
- for 19mm aggregate, severe exposure 6%
- Note: For DCI concrete a minimum of 5.5% is required. Where ACI recommends a higher minimum air content, it should be adhered to.

Curing – Section 5.11 Maximum chloride ion content for corrosion protection – Table 4.4.1

ACI 357 “Guide for the Design and Construction of Fixed Offshore Concrete Structures”

Maximum water-cement ratio – Table 2.1
 - Splash zone: 0.40

Minimum concrete cover of reinforcement – Table 2.2 splash zone:
 - 65mm or reinforcing steel
 - 90mm for posttension

Cover of stirrups:
 - 13mm less than above
 - Note: DCI concrete requires a minimum cover of 44.5mm greater than the maximum aggregate size.

Air content for freeze-thaw durability – Section 2.8.4
- for 19mm aggregate, severe exposure 6%
- Note: For DCI concrete a minimum of 5.5% is required. Where ACI recommends a higher minimum air content, it should be adhered to.

Curing of Concrete – Section 6.5